CuII(atsm) improves the neurological phenotype and survival of SOD1G93A mice and selectively increases enzymatically active SOD1 in the spinal cord

نویسندگان

  • James B. Hilton
  • Stephen W. Mercer
  • Nastasia K. H. Lim
  • Noel G. Faux
  • Gojko Buncic
  • Joseph S. Beckman
  • Blaine R. Roberts
  • Paul S. Donnelly
  • Anthony R. White
  • Peter J. Crouch
چکیده

Ubiquitous expression of mutant Cu/Zn-superoxide dismutase (SOD1) selectively affects motor neurons in the central nervous system (CNS), causing the adult-onset degenerative disease amyotrophic lateral sclerosis (ALS). The CNS-specific impact of ubiquitous mutant SOD1 expression is recapitulated in transgenic mouse models of the disease. Here we present outcomes for the metallo-complex CuII(atsm) tested for therapeutic efficacy in mice expressing SOD1G93A on a mixed genetic background. Oral administration of CuII(atsm) delayed the onset of neurological symptoms, improved locomotive capacity and extended overall survival. Although the ALS-like phenotype of SOD1G93A mice is instigated by expression of the mutant SOD1, we show the improved phenotype of the CuII(atsm)-treated animals involves an increase in mature mutant SOD1 protein in the disease-affected spinal cord, where concomitant increases in copper and SOD1 activity are also evident. In contrast to these effects in the spinal cord, treating with CuII(atsm) had no effect in liver on either mutant SOD1 protein levels or its activity, indicating a CNS-selective SOD1 response to the drug. These data provide support for CuII(atsm) as a treatment option for ALS as well as insight to the CNS-selective effects of mutant SOD1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model.

Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Z...

متن کامل

Oral Treatment with Cu[superscript II](atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper II [Cu II (atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically...

متن کامل

Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxicall...

متن کامل

ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism

Mutations in the metalloprotein Cu,Zn-superoxide dismutase (SOD1) cause approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease for which effective therapeutics do not yet exist. Transgenic rodent models based on over-expression of mutant SOD1 have been developed and these have provided opportunity to test new therapeutic strategies and to s...

متن کامل

Differences in glutathione S-transferase pi expression in transgenic mice with symptoms of neurodegeneration.

Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017